

PHMSA Research Project DTPH56-08-T-000012

IMPROVEMENT TO THE ECDA PROCESS: Potential Measurements on Paved Areas

PHMSA Advisory Committee Meeting – Dec. 10, 2009

GOAL - Potentials In Paved Areas

Current Procedures:

- Drilling through pavement every 5-10 feet (most prevalent)
- Offset measurements in adjacent unpaved areas
- Surface wetting (varying degrees of success)
- Skip paved areas completely

Goal – New/Improved Tools/Methods:

- More reliable data
- More efficient, safer
- User-friendly
- Applicable to LDCs and transmission operators alike
- Ultimately promotes more surveying in paved areas, thereby improving pipeline integrity

SCOPE - Potentials In Paved Areas

Three Paving Types:

- Asphalt
- Concrete
- Gravel

Primary Research Activities:

- Literature search / interviews / data mining
- Laboratory tests
- Field tests
- Develop procedures
- ◆ Final Report

Presentations on Research:

- ◆ NACE Corrosion Technology Week (9/09)
- American Gas Association (9/09)
- ◆ NACE International (3/10)

SCOPE - Potentials In Paved Areas

Work Element / Milestone		Completion (Months after Start)
1	Literature Search	3
2	Controlled Tests	6
3	Develop/Refine Prototype Tools/Methods	9
4	Field Trials / Verification	12
5	Implement Tools/Methods With Research Partners & Improve As Needed	15
6a	Field Re-Validation & Further Refinement As Needed	18
6b	Development of Go / No-Go Point & Written Procedures	18
7	Prepare Draft Report	21
8	Prepare Final Report & Draft Industry Standard	24
8a	Web-Based Workshop	TBD
8b	Papers/Presentations	TBD

New York City: Natural Gas LDC

- 8-miles Interrupted CIS/DCVG annually on paving, predominantly asphalt (wide range of age, thickness, and sub-bases not determined)
- Light surface wetting at reference electrode immediately prior to placement
- Techniques successfully used for several years
- 93% effective data as-measured with reference electrode on paving (2007 survey year)
- 7%, 13 areas totaling 0.5-mile required repeat measurements using bar-holes through paving (2007 survey year)

Corrpro CIS & DCVG On Recently Paved Road

Research Direction Based on Initial Activities

POSTULATION:

If basic electrical measurements could characterize a pavement, then decisions and guidelines regarding the validity of potential measurements with reference electrodes on the paved surface could be made.

- Asphalt Resistance Measurements
- Gravel Resistance Measurements, Validation "Holes"
- Concrete Correction Factor?

As the research has progressed, this postulation has been tested and refined. The result is a simple field test procedure that can be used at the onset of a potential survey to determine if on-paving measurements can be made accurately.

"Bathtub Tests"

Asphalt Resistance / Resistivity Measurements

Megohm Resistance Meter **■** 1,000 Volt Max. Source Voltage

Concrete Potential & Resistivity Measurements

Digital Voltmeter with Variable Input Resistance to 200 Megohm

"Bathtub Tests": ASPHALT

"Bathtub Tests": ASPHALT

Resistivity:

 ρ (ohm-cm) = R_{meas} (ohms) x Area ÷ Thickness

Normalized Surface Resistance (independent of thickness):

 R_{norm} (ohm-ft²) = R_{meas} (ohms) x Area

"Bathtub Tests": CONCRETE

Characterizing Pavement - Field Tests: GRAVEL

Characterizing Pavement – Field Tests: ASPHALT

Characterizing Pavement – Field Tests: CONCRETE

In-Situ Surface Resistance Measurements

Less than 5 minutes per test

corrpro[®]

Normalized Surface Resistance (independent of thickness):

 R_{norm} (ohm-ft²) = R_{meas} (ohms) x Area

Characterizing Pavement – Field Tests: ASPHALT

Holes vs. No-Holes: Well-Compacted Gravel

Holes vs. No-Holes: Weathered Asphalt/Rock

Holes vs. No-Holes: Weathered Concrete

Holes vs. No-Holes: Weathered Asphalt

Asphalt Parking Lot: CIS

Asphalt Parking Lot: Resistance at Start of CIS

Surface Resistance Threshold for Asphalt & Gravel

Reinforced Concrete Roadway: CIS

Reinforced Concrete Roadway: CIS

Concrete Paving: Potential vs. Time

Conclusions

Gravel & Asphalt:

- Simple, straightforward pre-survey surface resistance measurements can be used to determine if on-pavement potential surveys will yield accurate results
- A threshold of ~2x10⁵ ohm-ft² has been set
- ◆ A standard 3" diameter reference electrode with wetted towel or sponge is adequate to minimize the effect of contact resistance

Concrete:

- No clear, consistent method for making accurate pipe-to-soil potential measurements without drilling holes
- On-pavement DCVG techniques seem plausible additional field testing is planned to conclude this item

Test Procedures Outline

- Measurement options when paving is encountered
- Visual guides relating paving conditions to measurement reliability
- Electrical measurement types
- Instrumentation (commercially available equipment)
- User-friendly electrical measurement procedures, set-up schematics and photos
- Measurement interval frequency
- Error sources and impact on ECDA analysis
- Validation measurements, e.g. measurement sampling through drilled holes
- Data reporting

Thank you

We will be pleased to answer your questions.

